Teaching quality

Theoretical foundations, effectiveness studies, and cross-national comparison

Eckhard Klieme

German Institute for International Educational Research (DIPF)

Frankfurt am Main, Germany

Educational Research and Educational Information

WERA Conference Cape Town, South Africa August 4, 2018 Education: A multi-layer system constantly in move A pragmatic strategy for research: focusing one layer

School, from a pedagogical point of view, is

"... an optimized context of human development, where adults and children/adolescents are committed to "coconstructing" human growth "

Helmut Fend: Theory of Schooling (2000)

Teaching is ...

", the act of using method x to enable students to learn y" *Robin Alexander: Towards a Comparative Pedagogy (2009)* ...content-related interaction between students and teacher.

School, from a pedagogical point of view, is

"... an optimized context of human development, where adults and children/adolescents are committed to "co-constructing" human growth "

Helmut Fend: Theory of Schooling (2000)

Teaching is ...

", the act of using method x to enable students to learn y" *Robin Alexander: Towards a Comparative Pedagogy (2009)* ...content-related interaction between students and teacher.

Educational research on teaching, in order to support professionals (not just policy makers !), ...

... reconstructs the patterns of professional activity, especially the patterns of teaching that shape student learning and personal growth.

Research on Teaching international

Study	Year of fielding	Inter nati onal	Video	Long itudi nal	Inter vention	Sub ject
SIMS	1980-82	Х		Х		Ма
TIMSS	1995-2015pp.	Х	Х			Ма
TIMSS-Video I (US,JP,GER)	1995, 1999	Х				Ма
TIMSS-Video Germany	1995		Х	Х		Ма
TIMSS-Video II (NLD, CZR, CHE, HKG, AUS, US, JP)	1999	Х	Х			Ma, S
MET (US)	2009-2010		Х	Х		Ма
"Pythagoras" (GER, CHE)	2003-04		Х	Х		Ма
Quality of Instruction in Physics (CHE, DEU, FIN)	2008-09	Х	Х	Х		Phy
"IGEL" (GER)	2010-2011		Х	Х	Х	Ма
Co²Ca (GER)	2010-2011		Х	Х	Х	Ма
PISA	2012 рр	Х				Ma,S,R
TALIS-Video (CHL, COL, MEX, ESP, ENG, GER, JP, CHN)	2018	Х	Х	Х		Ма

Research on Teaching in international perspective

Teaching goals
 Teaching content
 Teaching practices
 Teaching quality
 Teaching effectiveness

Types of Teaching goals found in TALIS-Video (Praetorius, Klieme, Opfer, Bell, McCaffrey, Stecher et al., in press)

Subject matter knowledge and understanding Subject-related strategies, skills and abilities Subject-related attitudes and habits

Cross-curricular competencies (e.g., reasoning, ICT) General attitudes and habits Well-being, resilience Norms, values, ethics

Sustainability Reduction of inequalities

Research on Teaching in international perspective

Teaching goals
 Teaching content
 Teaching practices
 Teaching quality
 Teaching effectiveness

SIMS Longitudinal Add-On Burstein et al. 1993

"The only classroom or school variable to be significantly related to achievement growth (controlling for other student and schooling variables) in more than one system was opportunity to learn the content represented on the test (OTL). Even for OTL the results are spotty and inconsistent."(320)

Opportunity to learn = Content Exposure (Schmidt & McKnight 1995; Schmidt & Maier 2009)

- Content Coverage
- Content Exposure Variables: considering time and depth of teaching
- Content Emphasis Variables: e.g., lower vs. higher order skills

International Association for the Evaluation of Educational Achievement

PISA 2012 (see Klieme et al., 2013)

Experience with applied tasks

Have you been taught to do the following types of mathematics tasks during your time in school?

Using a train timetable, how long it would take to get from one place to another

Calculating how much more expensive a computer would be after adding tax

Calculating how many square metres of tiles you need to cover a floor

Understanding scientific tables presented in an article

Finding the actual distance between two places on a map with a 1:10,000 scale

Calculating the power consumption of an electronic appliance per week

PISA 2012 (see Klieme et al., 2013)

Experience with algebra tasks

Have you been taught to do the following types of mathematics tasks during your time in school?

```
Solving an equation like 3x+5=17.
```

Solving an equation like 2(x+3) = (x + 3) (x - 3).

Solving an equation like 3x+5=17.

Between Country Relationship: Math OTL with Math Achievement

Page

Within Country correlations: Math OTL with Math Achievement

Level of exposure to demanding school math (= algebra) is related to higher achievement

Correlations for applicationbased math are smaller, sometmes even negative

(Extreme cases: Shanghai, Netherlands.)

Research on Teaching in international perspective

Teaching goals
 Teaching content
 Teaching practices
 Teaching quality
 Teaching effectiveness

4= (almost) always 3= pretty often 2=once in a while 1=never

TIMSS-Video 1995 – Teaching practices Japan: Setting up & managing group work

This video can be found at

http://www.timssvideo.com/japan-mathematics-lessons/

as "JP1"

TIMSS-Video 1995 – Teaching practices Japan: Setting up & managing group work

Practices=

Shared patterns of activity within a culturally shaped social, physical, and intellectual space – Combination of doing, saying, handling artefacts.

Teaching Practices=

Patterns of classroom activity – Chains of teacher and student activities which establish, represent, and negotiate subject matter understanding.

TIMSS-Video 1995 – Teaching practices Germany: Whole class discussion

This video is unfortunataly not available for public access.

TIMSS-Video 1995 Follow Up – Teaching practices Germany: Mix = "Teacher-led group work"

This video clip has been shot for public use, but so far it is available on CD-ROM only.

You may request a file copy from the author.

Summary: Teaching practices

1. Teaching is a "**cultural activity**" (Stiegler & Hiebert, 1999). Within a given (rather: constructed) cultural context, (qualitative) research may identify recurring patterns of teacher and student activities grounded in shared knowledge = **teaching practices**.

2. Teaching practices may **change** over the years, partly through adapting practices from other cultures.

TIMSS 2007 Small groups

Frequency

How often do you do these things in your mathematics lessons?

We work together in small groups

4=(almost) every lesson 3=about half of the lessons 2=some lessons 1=never

Summary: Teaching practices

1. Teaching is a "**cultural activity**" (Stiegler & Hiebert, 1999). Within a given (rather: constructed) cultural context, (qualitative) research may identify recurring patterns of teacher and student activities grounded in shared knowledge = **teaching practices**.

2. Teaching practices may **change** over the years, partly through adapting practices from other cultures.

3. International **surveys** inform about frequencies of teaching and learning activities (e.g., lecturing, small group work) that are obviously shaped by cultural/pedagogical background. The same activity structure (e.g., small groups) may have different meaning across cultures.

4. Thesis: (a) We need video data to understand teaching.(b) Rather than comparing PRACTICES across cultures, we may be able to compare QUALITY and EFFECTS of teaching.

Research on Teaching in international perspective

Teaching goals
 Teaching content
 Teaching practices
 Teaching quality
 Teaching effectiveness

David Berliner (2005)

Teaching quality:

(a) good teaching: normative

 (b) successful teaching: factors shown to be effective, i.e. predicting student outcomes

Promoting good teaching through "teaching philosophies" or "intact patterns" (Gage 1985)

- Support for personal growth (Reform pedagogics...)
- Open learning environments (Hannafin, Land & Oliver)
- Personalized learning
- Support for understanding (Constructivist teaching)
- Discovery learning (Bruner)
- Inquiry-based science education
- Cognitive apprenticeship (Collins et al.)
- Mastery Learning (Bloom)
- Direct Instruction (Rosenshine)
- Competency-based education

Developing a basic structure across classroom factors: German extension to TIMSS-Video 1995

Exploratory factor analysis of classroom practice based on high-inference video-ratings (see Clausen, 2002, Klieme/Schümer/Knoll, 2001) (TIMSS-Video 1994 Germany: national sample, 100 + 86 lessons)

Structure and Classroom	Supportive climate	Cognitive Activation
Management		
Effective treatment of	Social orientation:	Teacher's ability to motivate
interruptions	"teacher takes care of his	students:
"teacher intervenes	students' problems"	"can present even abstract
immediately, before	Teachers diagnostic competence	content in an interesting
disturbance may evolve"	with regard to social behavior	manner "
Clarity of rules	Individual reference norm in	Errors as opportunities
Interruptions (-)	evaluation	Demanding tasks
Waste of time (-)	Rate of interaction (-)	Practicing by repetition (-)
Monitoring	Pressure on students (-)	
Time on task		
Teacher Unreliability (-)		
Clarity and structuredness of		
the Instruction		

Measuring Teaching Quality:

- Either through high-inference observation or
- through Student Questionnaires e.g., PISA 2012)

Classroom discipline (structure)

Students don't listen to what the teacher says (-)

There is noise and disorder (-)

The teacher has to wait a long time for students to quiet down(-)

Students cannot work well (-)

Students don't start working for a long time after the lesson begins (-)

Teacher support

The teacher shows an interest in every student's learning.

The teacher gives extra help when students need it

The teacher helps students with their learning

The teacher continues teaching until the students understand

Cognitive activation (based on Baumert et al.: COACTIV-Study)

The teacher asks questions that make us reflect on the problem

The teacher gives tasks that involve calculations alone (-)

The teacher gives problems with definite solutions (-)

The teacher gives problems that require us to think about them for an extended time

The teacher asks us to decide on our own procedures for solving complex problems

The teacher presents problems for which there is no immediately obvious method of solution

The teacher presents problems in different contexts so that students know whether they have understood the concepts

The teacher helps us to learn from mistakes we have made

The teacher asks us to explain how we have solved a problem

Theory of Schooling (Diederich/Tenorth, 1997; Fend, 2005; Dreeben & Barr, 1988; Doyle, 1977/1986)

Classroom teaching and learning both requires and fosters

- 1. Being on task
- 2. Motivation
- 3. Understanding

Psychological Foundations

1. Being on task

Classroom management, clarity and structure Process-Product-Research; Behavioral learning theory

2. Motivation

← support, social embeddedness
 Humanistic pedagogy and psychology;
 Self determination Theory (Deci & Ryan)

3. Understanding

← deep content, challenging tasks, cognitive activation Cognitive Theory (e.g. Brown 1997, Mayer 2004); concepts from (moderate) constructivism

See also Capella, Aber & Kim (2016). Teaching Beyond Achievement Tests. In Gitomer& Bell (Eds.): Handbook of Research on Teaching, 249-347

Pianta & Hamre: Classroom oberservation scales(CLASS)

- Classroom organization
- Emotional support
- Instructional support

Tschannen-Moran, M. & Woolfolk Hoy, A. (2001): Ohio teacher efficacy scales (OSTES)

- Efficacy for classroom management
- Efficacy for student engagement
- Efficacy for instructional strategies

Research on Teaching in international perspective

Teaching goals
 Teaching content
 Teaching practices
 Teaching quality
 Teaching effectiveness

TIMSS 1995 Small groups

Relation with Math Achievement

TIMSS 2007 Small groups

Relation with Math Achievement

How often do you do these things in your mathematics lessons?

We work together in small groups

Problem with Large Scale Assessment data:

- Cross-sectional data (e.g., TIMSS or PISA) do not allow any conclusion about direction of impact or causality.
- Even with longitudinal designs (such as TIMSS-Video/Germany, the MET-Study in der US), teaching variables (whether Content, Practices, or Quality) are oftentimes ill-defined.
- → video-based, single topic micro-genetic design with explicit intervention

Single Topic, micro-genetic design

as developed in the "Pythagoras" study (Klieme/Pauli/Reusser 2009),

- The study is tied to one specific topic of instruction. The "focal unit" has a well-defined starting point and covers all content taught until a different topic is addressed.
- All participating teachers teach the focal unit as they usually do.
- Tests/Questionnaires administered closely before/after the unit.
- All measures of teaching and learning (OTL, Teaching Practices, Teaching Quality, outcomes, predictors) are related to the unit

with intervention

as developed in the "IGEL" (Decristan, Hardy, Klieme et al.) and "Co²Ca" (Klieme, Rakoczy, Blum, Leiss at al.) studies

IGEL- Early science education in primary schools

Intact pattern: Inquiry-based science education

- 4,5 lessons (1,5 hrs each) on Floating and Sinking
- Based on learning materials developed for inquiry-based science education¹
- Adaptive elements (student experiments, individualised assignments) + treatments (e.g., formative assessment)

1) Jonen, A. & Möller, K. (2005). Klasse(n)kisten für den Sachunterricht. Ein Projekt des Seminars für Didaktik des Sachunterrichts im Rahmen von KiNT "Kinder lernen Naturwissenschaften und Technik". Thema: Schwimmen und Sinken. Essen: Spectra Verlag.

Add-on: Discrete practices - focus: formative assessment

Diagnostic tool: "Food for Thought" on conceptual understanding

Dieses kleine Stück Wachs	Dieses große Stück Wachs
schwimmt.	geht unter.
Dieser große Eisennagel	Dieser kleine Eisennagel
geht unter.	geht unter.
Diese große Glaskugel	Diese kleine Glaskugel
geht unter.	geht unter. Geht unter.
2. Schwimmt ein groß Fünf starke Männer könne	Ber, schwerer Baumstamm im Wasser en ihn nicht tragen.
2. Schwimmt ein groß Fünf starke Männer könne	Ber, schwerer Baumstamm im Wasser en ihn nicht tragen.
2. Schwimmt ein groß Fünf starke Männer könne	Ber, schwerer Baumstamm im Wasser en ihn nicht tragen.

Evaluation Design

N = 54 teachers (12 SC, 14 PL, 17 FA, 11 PC), 1070 students

Major Findings from IGEL: Predicting conceptual understanding of floating and sinking

1. Main positive effect for Formative Assessment intervention.

2. Interaction: Effect of Formative Assessment is stronger if Cognitive Activation is high.

Major Findings from IGEL: Predicting conceptual understanding of floating and sinking

1. Main positive effect for Formative Assessment intervention.

 Interaction: Effect of Formative Assessment is stronger if Cognitive Activation is high.
 Moderation: Effect of formative assessment is stronger for students with language problems

4. Main positive effect for Classroom management.
5. Moderation: Supportive Climate and Cognitive Activation do have a positive Effect in heterogeneous classrooms.

Major Findings from IGEL: Predicting student interest in science

1. Main positive effect for Formative Assessment intervention.

- 2. Mediation by perceived competence
- 3. Main positive effect of Supportive Climate and Cognitive Activation.

(Decristan et al. 2014, 2015a,b, 2017a,b; Fauth et al. 2014, 2018; Hondrich et al. 2016, 2018)

Limitations of IGEL

- No integrated model available. (Partly because of small sample size.)
- Unexpected direct effect of Cognitive Activation on student motivation.
- Teaching quality mainly assessed through student perceptions.
- No add-on effects for other practices (peer learning, scaffolding).
- Content matter and teaching pattern (=didactical approach) were kept constant \rightarrow further research needed
- German context only.

"What works where? The relationship between instructional variables and schools' mean scores in mathematics and science in low-, medium-, and high-achieving countries" **Ruth Zuzovsky (2013)**

> Ø IERI

Based on TIMSS 2007:

HLM analyses run separately for individual practice items including 7,201 schools from 48 countries, controlling for individual student background

Finding: Constructivist practices (e.g., "We work on problems on our own.") will be more beneficial for students only in high-achieving countries.

Research on Teaching in international perspective

\rightarrow Challenge:

Running video-based a) longitudinal surveys (such as MET), b) single-topic micro-genetic studies (Pythagoras), c) intervention studies (IGEL)

in multiple countries in order to understand the role of culture in teaching, support professional development in a given country, and prevent simple "borrowing" across countries.

TALIS-Video (ongoing) is a first step for type b).

Research on Teaching in international perspective

\rightarrow Challenge:

In line with Felice Levine's remarks at the Presidential Session, we as a research community need to

- collaborate across nations,
- take all kinds of goals into account (subject-related&personal)
- combine research disciplines in theory and empirical studies,
- establish rich data sets (involving video data)
- get into dialogue with practitioners.

Thank you for your attention !

Eckhard Klieme

klieme@dipf.de

