Teaching quality
Theoretical foundations, effectiveness studies, and cross-national comparison

Eckhard Klieme

German Institute for International Educational Research (DIPF)

Frankfurt am Main, Germany

WERA Conference
Cape Town, South Africa
August 4, 2018
The classroom is the spatiotemporal, interactional and cognitive context where professionals create (and co-construct) an environment for kids supporting personal growth.
School, from a pedagogical point of view, is …

„… an optimized context of human development, where adults and children/adolescents are committed to „co-constructing“ human growth“

Teaching is …

„ the act of using method x to enable students to learn y“

…content-related interaction between students and teacher.
School, from a pedagogical point of view, is …
„… an optimized context of human development, where adults and children/adolescents are committed to „co-constructing“ human growth “

Helmut Fend: Theory of Schooling (2000)

Teaching is …
„the act of using method x to enable students to learn y“
Robin Alexander: Towards a Comparative Pedagogy (2009)

…content-related interaction between students and teacher.

Educational research on teaching, in order to support professionals (not just policy makers !), …

… reconstructs the patterns of professional activity, especially the patterns of teaching that shape student learning and personal growth.
Research on Teaching international

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of fielding</th>
<th>International</th>
<th>Video</th>
<th>Longitudinal</th>
<th>Intervention</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMS</td>
<td>1980-82</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>TIMSS</td>
<td>1995-2015 pp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>TIMSS-Video I (US, JP, GER)</td>
<td>1995, 1999</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>TIMSS-Video Germany</td>
<td>1995</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>TIMSS-Video II (NLD, CZR, CHE, HKG, AUS, US, JP)</td>
<td>1999</td>
<td>X</td>
<td>X</td>
<td></td>
<td>Ma, S</td>
<td></td>
</tr>
<tr>
<td>MET (US)</td>
<td>2009-2010</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>„Pythagoras“ (GER, CHE)</td>
<td>2003-04</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>Quality of Instruction in Physics (CHE, DEU, FIN)</td>
<td>2008-09</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Phy</td>
<td></td>
</tr>
<tr>
<td>„IGEL“ (GER)</td>
<td>2010-2011</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>Co²Ca (GER)</td>
<td>2010-2011</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
<tr>
<td>PISA</td>
<td>2012 pp</td>
<td>X</td>
<td></td>
<td></td>
<td>Ma, S, R</td>
<td></td>
</tr>
<tr>
<td>TALIS-Video (CHL, COL, MEX, ESP, ENG, GER, JP, CHN)</td>
<td>2018</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Ma</td>
<td></td>
</tr>
</tbody>
</table>
Research on Teaching in international perspective

1) Teaching goals
2) Teaching content
3) Teaching practices
4) Teaching quality
5) Teaching effectiveness
Types of Teaching goals found in TALIS-Video
(Praetorius, Klieme, Opfer, Bell, McCaffrey, Stecher et al., in press)

Subject matter knowledge and understanding
Subject-related strategies, skills and abilities
Subject-related attitudes and habits

Cross-curricular competencies (e.g., reasoning, ICT)
General attitudes and habits
Well-being, resilience
Norms, values, ethics

Sustainability
Reduction of inequalities
Research on Teaching in international perspective

1) Teaching goals
2) Teaching content
3) Teaching practices
4) Teaching quality
5) Teaching effectiveness
"The only classroom or school variable to be significantly related to achievement growth (controlling for other student and schooling variables) in more than one system was opportunity to learn the content represented on the test (OTL). Even for OTL the results are spotty and inconsistent." (320)

Opportunity to learn = Content Exposure
(Schmidt & McKnight 1995; Schmidt & Maier 2009)

- Content Coverage
- Content Exposure Variables: considering time and depth of teaching
- Content Emphasis Variables: e.g., lower vs. higher order skills
Experience with applied tasks

Have you been taught to do the following types of mathematics tasks during your time in school?

<table>
<thead>
<tr>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using a train timetable, how long it would take to get from one place to another</td>
</tr>
<tr>
<td>Calculating how much more expensive a computer would be after adding tax</td>
</tr>
<tr>
<td>Calculating how many square metres of tiles you need to cover a floor</td>
</tr>
<tr>
<td>Understanding scientific tables presented in an article</td>
</tr>
<tr>
<td>Finding the actual distance between two places on a map with a 1:10,000 scale</td>
</tr>
<tr>
<td>Calculating the power consumption of an electronic appliance per week</td>
</tr>
</tbody>
</table>
PISA 2012 (see Klieme et al., 2013)

Experience with algebra tasks

Have you been taught to do the following types of mathematics tasks during your time in school?

<table>
<thead>
<tr>
<th>Type of Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solving an equation like $3x + 5 = 17$.</td>
</tr>
<tr>
<td>Solving an equation like $2(x + 3) = (x + 3)(x - 3)$.</td>
</tr>
<tr>
<td>Solving an equation like $3x + 5 = 17$.</td>
</tr>
</tbody>
</table>
Between Country Relationship:
Math OTL with Math Achievement
Within Country correlations:
Math OTL with Math Achievement

Level of exposure to demanding school math (= algebra) is related to higher achievement
Correlations for application-based math are smaller, sometimes even negative
(Extreme cases: Shanghai, Netherlands.)
Research on Teaching in international perspective

1) Teaching goals
2) Teaching content
3) Teaching practices
4) Teaching quality
5) Teaching effectiveness
How often do you work together in pairs or small groups in your mathematics lesson?

4= (almost) always 3= pretty often 2= once in a while 1= never
How often do you work together in pairs or small groups in your mathematics lesson?
This video can be found at

as „JP1“
TIMSS-Video 1995 – Teaching practices
Japan: Setting up & managing group work

Practices=
Shared patterns of activity within a culturally shaped social, physical, and intellectual space – Combination of doing, saying, handling artefacts.

Teaching Practices=
Patterns of classroom activity – Chains of teacher and student activities which establish, represent, and negotiate subject matter understanding.
This video is unfortunatly not available for public access.
This video clip has been shot for public use, but so far it is available on CD-ROM only.

You may request a file copy from the author.
Summary: Teaching practices

1. Teaching is a “cultural activity” (Stiegler & Hiebert, 1999). Within a given (rather: constructed) cultural context, (qualitative) research may identify recurring patterns of teacher and student activities grounded in shared knowledge = teaching practices.

2. Teaching practices may change over the years, partly through adapting practices from other cultures.
How often do you do these things in your mathematics lessons?

We work together in small groups.

Mean frequency for small groups:
- 4 = (almost) every lesson
- 3 = about half of the lessons
- 2 = some lessons
- 1 = never
TIMSS 2007
Small groups

Frequency

How often do you do these things in your mathematics lessons?

We work together in small groups
Summary: Teaching practices

1. Teaching is a “cultural activity” (Stiegler & Hiebert, 1999). Within a given (rather: constructed) cultural context, (qualitative) research may identify recurring patterns of teacher and student activities grounded in shared knowledge = teaching practices.

2. Teaching practices may change over the years, partly through adapting practices from other cultures.

3. International surveys inform about frequencies of teaching and learning activities (e.g., lecturing, small group work) that are obviously shaped by cultural/pedagogical background. The same activity structure (e.g., small groups) may have different meaning across cultures.

4. Thesis: (a) We need video data to understand teaching. (b) Rather than comparing PRACTICES across cultures, we may be able to compare QUALITY and EFFECTS of teaching.
Research on Teaching in international perspective

1) Teaching goals
2) Teaching content
3) Teaching practices
4) Teaching quality
5) Teaching effectiveness
David Berliner (2005)

Teaching quality:

(a) good teaching: normative

(b) successful teaching:
 factors shown to be effective, i.e. predicting student outcomes
Promoting good teaching through „teaching philosophies“ or „intact patterns“ (Gage 1985)

- Support for personal growth (Reform pedagogics…)
- Open learning environments (Hannafin, Land & Oliver)
- Personalized learning

- Support for understanding (Constructivist teaching)
- Discovery learning (Bruner)
- Inquiry-based science education
- Cognitive apprenticeship (Collins et al.)

- Mastery Learning (Bloom)
- Direct Instruction (Rosenshine)
- Competency-based education
Developing a basic structure across classroom factors: German extension to TIMSS-Video 1995

Exploratory factor analysis of classroom practice based on high-inference video-ratings (see Clausen, 2002, Klieme/Schümer/Knoll, 2001) (TIMSS-Video 1994 Germany: national sample, 100 + 86 lessons)

<table>
<thead>
<tr>
<th>Structure and Classroom Management</th>
<th>Supportive climate</th>
<th>Cognitive Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective treatment of interruptions</td>
<td>Social orientation: „teacher takes care of his students‘ problems“ Teachers diagnostic competence with regard to social behavior Individual reference norm in evaluation Rate of interaction (-) Pressure on students (-)</td>
<td>Teacher’s ability to motivate students: „can present even abstract content in an interesting manner“ Errors as opportunities Demanding tasks Practicing by repetition (-)</td>
</tr>
</tbody>
</table>
Measuring Teaching Quality:
Either through high-inference observation or through Student Questionnaires e.g., PISA 2012)

Classroom discipline (structure)

<table>
<thead>
<tr>
<th>Students don’t listen to what the teacher says (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is noise and disorder (-)</td>
</tr>
<tr>
<td>The teacher has to wait a long time for students to quiet down (-)</td>
</tr>
<tr>
<td>Students cannot work well (-)</td>
</tr>
<tr>
<td>Students don’t start working for a long time after the lesson begins (-)</td>
</tr>
</tbody>
</table>

Teacher support

<table>
<thead>
<tr>
<th>The teacher shows an interest in every student’s learning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The teacher gives extra help when students need it</td>
</tr>
<tr>
<td>The teacher helps students with their learning</td>
</tr>
<tr>
<td>The teacher continues teaching until the students understand</td>
</tr>
</tbody>
</table>
Cognitive activation (based on Baumert et al.: COACTIV-Study)

<table>
<thead>
<tr>
<th>The teacher asks questions that make us reflect on the problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The teacher gives tasks that involve calculations alone (-)</td>
</tr>
<tr>
<td>The teacher gives problems with definite solutions (-)</td>
</tr>
<tr>
<td>The teacher gives problems that require us to think about them for an extended time</td>
</tr>
<tr>
<td>The teacher asks us to decide on our own procedures for solving complex problems</td>
</tr>
<tr>
<td>The teacher presents problems for which there is no immediately obvious method of solution</td>
</tr>
<tr>
<td>The teacher presents problems in different contexts so that students know whether they have understood the concepts</td>
</tr>
<tr>
<td>The teacher helps us to learn from mistakes we have made</td>
</tr>
<tr>
<td>The teacher asks us to explain how we have solved a problem</td>
</tr>
</tbody>
</table>
Theory of Schooling
(Diederich/Tenorth, 1997; Fend, 2005; Dreeben & Barr, 1988; Doyle, 1977/1986)

Classroom teaching and learning both requires and fosters

1. Being on task
2. Motivation
3. Understanding
Psychological Foundations

1. Being on task
 ← classroom management, clarity and structure
 Process-Product-Research; Behavioral learning theory

2. Motivation
 ← support, social embeddedness
 Humanistic pedagogy and psychology;
 Self determination Theory (Deci & Ryan)

3. Understanding
 ← deep content, challenging tasks, cognitive activation
 Cognitive Theory (e.g. Brown 1997, Mayer 2004);
 concepts from (moderate) constructivism

See also Capella, Aber & Kim (2016). Teaching Beyond Achievement Tests. In Gitomer& Bell (Eds.): Handbook of Research on Teaching, 249-347
Pianta & Hamre: Classroom observation scales (CLASS)

- Classroom organization
- Emotional support
- Instructional support

Ohio teacher efficacy scales (OSTES)

- Efficacy for classroom management
- Efficacy for student engagement
- Efficacy for instructional strategies
Research on Teaching in international perspective

1) Teaching goals
2) Teaching content
3) Teaching practices
4) Teaching quality
5) Teaching effectiveness
TIMSS 1995
Small groups

Relation with Math Achievement

How often do you work together in pairs or small groups in your mathematics lesson?
How often do you do these things in your mathematics lessons?

We work together in small groups

TIMSS 2007
Small groups

Relation with Math Achievement

Graph showing the relation between small group work and math achievement across Botswana, the United States, and Japan.
Problem with Large Scale Assessment data:
- Cross-sectional data (e.g., TIMSS or PISA) do not allow any conclusion about direction of impact or causality.
- Even with longitudinal designs (such as TIMSS-Video/Germany, the MET-Study in der US), teaching variables (whether Content, Practices, or Quality) are oftentimes ill-defined.

→ video-based, single topic micro-genetic design with explicit intervention
Single Topic, micro-genetic design

as developed in the “Pythagoras” study (Klieme/Pauli/Reusser 2009),

- The study is tied to one specific topic of instruction. The “focal unit” has a well-defined starting point and covers all content taught until a different topic is addressed.
- All participating teachers teach the focal unit as they usually do.
- Tests/Questionnaires administered closely before/after the unit.
- All measures of teaching and learning (OTL, Teaching Practices, Teaching Quality, outcomes, predictors) are related to the unit with intervention

as developed in the “IGEL” (Decristan, Hardy, Klieme et al.) and “Co²Ca” (Klieme, Rakoczy, Blum, Leiss at al.) studies
IGEL- Early science education in primary schools

Intact pattern: Inquiry-based science education

- 4.5 lessons (1.5 hrs each) on Floating and Sinking
- Based on learning materials developed for inquiry-based science education\(^1\)
- Adaptive elements (student experiments, individualised assignments) + treatments (e.g., formative assessment)

Add-on: Discrete practices - focus: formative assessment

Diagnostic tool: „Food for Thought“ on conceptual understanding

1. Was schwimmt, was geht unter?

<table>
<thead>
<tr>
<th>Dieses kleine Stück Wachs</th>
<th>Dieses große Stück Wachs</th>
</tr>
</thead>
<tbody>
<tr>
<td>schwimmt.</td>
<td>□ geht unter.</td>
</tr>
<tr>
<td></td>
<td>□ schwimmt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dieser große Eisennagel</th>
<th>Dieser kleine Eisennagel</th>
</tr>
</thead>
<tbody>
<tr>
<td>geht unter.</td>
<td>□ geht unter.</td>
</tr>
<tr>
<td></td>
<td>□ schwimmt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diese große Glaskugel</th>
<th>Diese kleine Glaskugel</th>
</tr>
</thead>
<tbody>
<tr>
<td>geht unter.</td>
<td>□ geht unter.</td>
</tr>
<tr>
<td></td>
<td>□ schwimmt.</td>
</tr>
</tbody>
</table>

2. Schwimmt ein großer, schwerer Baumstamm im Wasser?

Fünf starke Männer können ihn nicht tragen.
Evaluation Design

Randomization
- Treatment Control Group n=13
- Experimental Group 1 n=12
- Experimental Group 2 n=15
- Experimental Group 3 n=17

Teacher Trainings
- Topic
 - Floating & Sinking, Concept of Density
- Adaptive Teaching Strategies
 - Parental Counselling
 - Scaffolding
 - Peer Learning
 - Formative Assessment

Implementation in Classroom Instruction
- Concept of Density
 - Regular Learning Settings
 - Scaffolding
 - Peer Learning
 - Formative Assessment
- Concept of Buoyancy Force & Displacement
 - Floating & Sinking, Concept of Buoyancy Force & Displacement
 - Scaffolding
 - Peer Learning
 - Formative Assessment

Figure: Design of the IGEL-project, a–h: time points of measurement at student level and/or at teacher level.

N = 54 teachers (12 SC, 14 PL, 17 FA, 11 PC), 1070 students
Major Findings from IGEL: Predicting conceptual understanding of floating and sinking

1. Main positive effect for Formative Assessment intervention.
2. Interaction: Effect of Formative Assessment is stronger if Cognitive Activation is high.
Major Findings from IGEL: Predicting conceptual understanding of floating and sinking

1. Main positive effect for Formative Assessment intervention.
2. Interaction: Effect of Formative Assessment is stronger if Cognitive Activation is high.
3. Moderation: Effect of formative assessment is stronger for students with language problems.
4. Main positive effect for Classroom management.
5. Moderation: Supportive Climate and Cognitive Activation do have a positive Effect in heterogeneous classrooms.
Major Findings from IGEL: Predicting student interest in science

1. Main positive effect for Formative Assessment intervention.
2. Mediation by perceived competence
3. Main positive effect of Supportive Climate and Cognitive Activation.

(Decristan et al. 2014, 2015a,b, 2017a,b; Fauth et al. 2014, 2018; Hondrich et al. 2016, 2018)
Limitations of IGEL

- No integrated model available. (Partly because of small sample size.)

- Unexpected direct effect of Cognitive Activation on student motivation.

- Teaching quality mainly assessed through student perceptions.

- No add-on effects for other practices (peer learning, scaffolding).

- Content matter and teaching pattern (=didactical approach) were kept constant → further research needed

- German context only.
Based on TIMSS 2007:
HLM analyses
run separately for individual practice items
including 7,201 schools from 48 countries,
controlling for individual student background

Finding: Constructivist practices (e.g., “We work on problems
on our own.”) will be more beneficial for students only in high-
achieving countries.
Research on Teaching in international perspective

→ Challenge:

Running video-based
a) longitudinal surveys (such as MET),
b) single-topic micro-genetic studies (Pythagoras),
c) intervention studies (IGEL)

in multiple countries in order to
understand the role of culture in teaching,
support professional development in a given country, and
prevent simple “borrowing” across countries.

TALIS-Video (ongoing) is a first step for type b).
Research on Teaching in international perspective

→ Challenge:

In line with Felice Levine’s remarks at the Presidential Session, we as a research community need to

- collaborate across nations,
- take all kinds of goals into account (subject-related & personal)
- combine research disciplines in theory and empirical studies,
- establish rich data sets (involving video data)
- get into dialogue with practitioners.
Thank you for your attention!

Eckhard Klieme

klieme@dipf.de